Муниципальное бюджетное общеобразовательное учреждение «Томская средняя общеобразовательная школа» «Томса шöр школа» муниципальнöй сьöмкуд велöдан учреждение

Утверждено
Приказом от 25.08.2020 г. № 75А-о.д.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

Биология (углубленный уровень)				
(наименование учебного предмета)				
среднее общее образование				
(уровень образования)				
2 года				
(срок реализации программы)				

Составлена на основе <u>Примерной основной образовательной программы среднего общего образования(одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з) Программа среднего (полного) общего образования. Биология. Общая биология. 10-11 классы. Профильный уровень. (автор В.Б. Захаров) М.: Дрофа, 2011г</u>

(наименование программы, автор программы)

Планируемые результаты освоения обучающимися основной образовательной программы среднего общего образования по биологии

Планируемые личностные результаты освоения ООП Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- готовность И способность обучающихся саморазвитию К И в соответствии с общечеловеческими ценностями самовоспитанию И идеалами гражданского общества, потребность физическом самосовершенствовании, спортивно-оздоровительной занятиях деятельностью;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):

- российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;
- уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения;
- воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

- гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни;
- признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность;
- мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации;
- готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности;
- приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному дост
 - оинству людей, их чувствам, религиозным убеждениям;
- готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям.

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;

- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

- ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;
- положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

– уважение ко всем формам собственности, готовность к защите своей собственности,

- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;
- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

физическое, эмоционально-психологическое, социальное благополучие обучающихся образовательной В жизни организации, ощущение детьми безопасности И психологического комфорта, информационной безопасности.

Планируемые метапредметные результаты освоения ООП

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

1. Регулятивные универсальные учебные действия Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

2. Познавательные универсальные учебные действия Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

3. Коммуникативные универсальные учебные действия Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

Планируемые предметные результаты Выпускник на углубленном уровне научится:

- оценивать роль биологических открытий и современных исследований в развитии науки и в практической деятельности людей;
- оценивать роль биологии в формировании современной научной картины мира, прогнозировать перспективы развития биологии;

- устанавливать и характеризовать связь основополагающих биологических понятий (клетка, организм, вид, экосистема, биосфера) с основополагающими понятиями других естественных наук;
- обосновывать систему взглядов на живую природу и место в ней человека, применяя биологические теории, учения, законы, закономерности, понимать границы их применимости;
- проводить учебно-исследовательскую деятельность по биологии: выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов;
- выявлять и обосновывать существенные особенности разных уровней организации жизни;
- устанавливать связь строения и функций основных биологических макромолекул, их роль в процессах клеточного метаболизма;
- решать задачи на определение последовательности нуклеотидов ДНК и иРНК (мРНК), антикодонов тРНК, последовательности аминокислот в молекуле белка, применяя знания о реакциях матричного синтеза, генетическом коде, принципе комплементарности;
- делать выводы об изменениях, которые произойдут в процессах матричного синтеза в случае изменения последовательности нуклеотидов ДНК;
- сравнивать фазы деления клетки; решать задачи на определение и сравнение количества генетического материала (хромосом и ДНК) в клетках многоклеточных организмов в разных фазах клеточного цикла;
- выявлять существенные признаки строения клеток организмов разных царств живой природы, устанавливать взаимосвязь строения и функций частей и органоидов клетки;
- обосновывать взаимосвязь пластического и энергетического обменов; сравнивать процессы пластического и энергетического обменов, происходящих в клетках живых организмов;
- определять количество хромосом в клетках растений основных отделов на разных этапах жизненного цикла;
- решать генетические задачи на дигибридное скрещивание, сцепленное (в том числе сцепленное с полом) наследование, анализирующее скрещивание, применяя законы наследственности и закономерности сцепленного наследования;
- раскрывать причины наследственных заболеваний, аргументировать необходимость мер предупреждения таких заболеваний;
 - сравнивать разные способы размножения организмов;
 - характеризовать основные этапы онтогенеза организмов;
- выявлять причины и существенные признаки модификационной и мутационной изменчивости; обосновывать роль изменчивости в естественном и искусственном отборе;
- обосновывать значение разных методов селекции в создании сортов растений, пород животных и штаммов микроорганизмов;

- обосновывать причины изменяемости и многообразия видов, применяя синтетическую теорию эволюции;
- характеризовать популяцию как единицу эволюции, вид как систематическую категорию и как результат эволюции;
 - устанавливать связь структуры и свойств экосистемы;
- составлять схемы переноса веществ и энергии в экосистеме (сети питания), прогнозировать их изменения в зависимости от изменения факторов среды;
- аргументировать собственную позицию по отношению к экологическим проблемам и поведению в природной среде;
- обосновывать необходимость устойчивого развития как условия сохранения биосферы;
- оценивать практическое и этическое значение современных исследований в биологии, медицине, экологии, биотехнологии; обосновывать собственную оценку;
- выявлять в тексте биологического содержания проблему и аргументированно ее объяснять;
- представлять биологическую информацию в виде текста, таблицы, схемы, графика, диаграммы и делать выводы на основании представленных данных; преобразовывать график, таблицу, диаграмму, схему в текст биологического содержания.

Выпускник на углубленном уровне получит возможность научиться:

- организовывать и проводить индивидуальную исследовательскую деятельность по биологии (или разрабатывать индивидуальный проект): выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт своих исследований;
- прогнозировать последствия собственных исследований с учетом этических норм и экологических требований;
- выделять существенные особенности жизненных циклов представителей разных отделов растений и типов животных; изображать циклы развития в виде схем;
- анализировать и использовать в решении учебных и исследовательских задач информацию о современных исследованиях в биологии, медицине и экологии;
- аргументировать необходимость синтеза естественно-научного и социогуманитарного знания в эпоху информационной цивилизации;
- моделировать изменение экосистем под влиянием различных групп факторов окружающей среды;
- выявлять в процессе исследовательской деятельности последствия антропогенного воздействия на экосистемы своего региона, предлагать способы снижения антропогенного воздействия на экосистемы;

– использовать приобретенные компетенции в практической деятельности и повседневной жизни для приобретения опыта деятельности, предшествующей профессиональной, в основе которой лежит биология как учебный предмет.

Содержание учебного предмета РАЗДЕЛ 1.

Введение в биологию (5 часов)

Тема 1.1.

Предмет и задачи общей биологии. Уровни организации живой материи. (2 часа)

Биология как наука; предмет и методы изучения в биологии. Общая биология — учебная дисциплина об основных закономерностях возникновения, развития и поддержания жизни на Земле. Общая биология как один из источников формирования диалектико-материалистического мировоззрения. Общебиологические закономерности — основа рационального природопользования, сохранения окружающей среды, интенсификации сельскохозяйственного производства и сохранения здоровья человека.

Связь биологических дисциплин с другими науками (химией, физикой, географией, астрономией, историей и др.). Роль биологии в формировании научных представлений о мире.

Жизнь как форма существования материи; определение понятия «жизнь». Жизнь и живое вещество; косное, биокосное и биогенное вещество биосферы. Уровни организации живой материи и принципы их выделения; молекулярный, субклеточный, клеточный, тканевый и органный, организменный, популяционно-видовой, биоценотический и биосферный уровни организации живого.

Демонстрация. Схемы, отражающие многоуровневую организацию живого (организменный и биоценотический уровни).

Тема 1.2.

Основные свойства живого. Многообразие живого мира. (3 часа)

Единство химического состава живой материи; основные группы химических элементов и молекул, образующие живое вещество биосферы. Клеточное строение организмов, населяющих Землю. Обмен веществ (метаболизм) и

саморегуляция в биологических системах; понятие о гомеостазе как об обязательном условии существования живых систем. Самовоспроизведение; наследственность и изменчивость как основа существования живой материи, их проявления на различных уровнях организации живого. Рост и развитие. Раздражимость; формы избирательной реакции организмов на внешние воздействия (безусловные и условные рефлексы; таксисы, тропизмы и настии). Ритмичность процессов жизнедеятельности; биологические ритмы и их адаптивное значение. Дискретность живого вещества и взаимоотношение части и целого в биосистемах. Энергозависимость живых организмов; формы потребления энергии.

Царства живой природы; естественная классификация живых организмов. Видовое разнообразие крупных систематических групп и основные принципы организации животных, растений, грибов и микроорганизмов.

Демонстрация. Схемы, отражающие структуру царств живой природы, многообразие живых организмов. Схемы и таблицы, характеризующие строение и распространение в биосфере растений, животных, грибов и микроорганизмов.

Основные понятия. Биология. Жизнь. Основные отличия живых организмов от объектов неживой природы. Уровни организации живой материи. Объекты и методы изучения в биологии. Многообразие живого мира; царства живой природы, естественная система классификации живых организмов.

Неорганические и органические молекулы и вещества; клетка, ткань, орган, системы органов. Понятие о целостном организме. Вид и популяция (общие представления). Биогеоценоз. Биосфера.

Умения. Объяснять основные свойства живых организмов, в том числе этапы метаболизма, саморегуляцию; понятие гомеостаза и другие особенности живых систем различного иерархического уровня как результат эволюции живой материи. Характеризовать структуру царств живой природы, объяснять принципы классификации живых организмов.

Межпредметные связи. Ботаника. Основные группы растений; принципы организации растительных организмов, грибов и микроорганизмов.

Зоология. Основные группы животных; отличия животных и растительных организмов.

Неорганическая химия. Кислород, водород, углерод, азот, сера, фосфор и другие элементы периодической системы Д. И. Менделеева, их основные свойства.

Органическая химия. Основные группы органических соединений; биологические полимеры — белки, жиры и нуклеиновые кислоты, углеводы.

Происхождение и начальные этапы развития жизни на Земле. (18 часов)

Тема 2.1.

История представлений о возникновении жизни на Земле. (4 часа)

Мифологические представления. Первые научные попытки объяснения сущности и процесса возникновения жизни. Опыты Ф. Реди, взгляды В. Гарвея, эксперименты Л. Пастера. Теории вечности жизни. Материалистические представления о возникновении жизни на Земле.

Демонстрация. Схема экспериментов Л. Пастера.

Тема 2.2.

Предпосылки возникновения жизни на Земле. (6 часов)

Предпосылки возникновения жизни на Земле: космические и планетарные предпосылки; химические предпосылки эволюции материи в направлении возникновения органических молекул: первичная атмосфера и эволюция химических элементов, неорганических и органических молекул на ранних этапах развития Земли.

Тема 2.3.

Современные представления о возникновении жизни на Земле. (8 часов)

Современные представления о возникновении жизни; теория А. И. Опарина, опыты С. Миллера. Теории происхождения протобиополимеров. Свойства коацерватов: реакции обмена веществ, самовоспроизведение. Эволюция протобионтов: формирование внутренней среды, появление катализаторов органической природы, возникновение генетического кода. Значение работ С. Фокса и Дж. Бернала. Гипотезы возникновения генетического кода. Начальные этапы биологической эволюции: возникновение фотосинтеза, эукариот, полового процесса и многоклеточности.

Демонстрация. Схемы возникновения одноклеточных эукариот, многоклеточных организмов, развития царств растений и животных, представленных в учебнике.

Основные понятия. Теория академика А. И. Опарина о происхождении жизни на Земле. Химическая эволюция. Небиологический синтез органических соединений. Коацерватные капли и их эволюция. Протобионты. Биологическая мембрана. Возникновение генетического кода. Безъядерные (прокариотические) клетки. Клетки, имеющие ограниченное оболочкой ядро. Клетка — элементарная структурно-функциональная единица всего живого.

Умения. Объяснять с материалистических позиций процесс возникновения жизни на Земле как естественное событие в цепи эволюционных преобразований материи в целом.

Межпредметные связи. Неорганическая химия. Периодическая система элементов Д. И. Менделеева. Свойства растворов. Теория электролитической диссоциации.

Органическая химия. Получение и химические свойства предельных углеводородов.

Физика. Ионизирующее излучение; понятие о дозе излучения и биологической защите. Астрономия. Организация планетных систем. Солнечная система, ее структура. Место планеты Земля в Солнечной системе.

РАЗДЕЛ 3.

Учение о клетке (31 час)

Тема 3.1.

Введение в цитологию. (1час)

Предмет и задачи цитологии. Методы изучения биологии: световая и электронная микроскопия; биохимические и иммунологические

методы. Два типа клеточной организации: прокариотические и эукариотические клетки.

Демонстрация. Принципиальные схемы устройства светового и электронного микроскопа. Схемы, иллюстрирующие методы препаративной биохимии и иммунологии.

Тема 3.2.

Химическая организация живого вещества (9 часов)

Элементный состав живого вещества биосферы. Распространенность элементов, их вклад в образование живой материи и объектов неживой природы. Макроэлементы, микроэлементы; их вклад в образование неорганических и органических молекул живого вещества. Неорганические молекулы живого вещества: вода; химические свойства и биологическая роль: растворитель гидрофильных молекул, среда протекания биохимических превращений; роль воды в компартментализации и межмолекулярных взаимодействиях, теплорегуляции и др. Соли неорганических кислот, их обеспечение процессов жизнедеятельности поддержание вклад гомеостаза. Роль катионов анионов обеспечении процессов И

жизнедеятельности. Осмос и осмотическое давление; осмотическое поступление молекул в клетку. Буферные системы клетки и организма.

Органические молекулы. Биологические полимеры — белки; структурная организация (первичная, варианты вторичной, третичная и четвертичная структурная организация молекул белка И химические образующие). Свойства белков: водорастворимость, термолабильность, поверхностный заряд и др.; денатурация (обратимая и необратимая), ренатурация; биологический смысл и практическое значение. Функции белковых молекул. Биологические катализаторы — белки, классификация, их роль белков в обеспечении процессов жизнедеятельности. свойства. Углеводы в жизни растений, животных, грибов и микроорганизмов. Структурно-функциональные особенности организации моно-и дисахаридов. Строение и биологическая роль биополимеров — полисахаридов. Жиры основной структурный компонент клеточных мембран и источник энергии. Особенности строения жиров и липоидов, лежащие в основе их функциональной активности на уровне клетки и целостного организма. ДНК — молекулы наследственности; история изучения. Уровни структурной организации; структура полинуклеотидных цепей, правило комплементар- $Чаргаффа^{I}$), двойная спираль Крик); ности {правило (Уотсон биологическая роль ДНК. Генетический код, свойства кода. Редупликация ДНК, передача наследственной информации из поколения в поколение. Передача наследственной информации из ядра в цитоплазму; транскрипция. РНК, структура и функции. Информационные, транспортные, рибосомальные и регуляторные РНК. «Малые» молекулы и их роль в обменных процессах. Витамины: строение, источники поступления, функции в организме.

Определение нуклеотидных последовательностей (секвенирование) геномов растений и животных. Геном человека. Генетическая инженерия; генодиагностика и генотерапия заболеваний человека и животных.

Демонстрация. Объемные модели структурной организации биологических полимеров: белков и нуклеиновых кислот; их сравнение с моделями искусственных полимеров (поливинилхлорид и др.).

Лабораторные и практические работы

Ферментативное расщепление пероксида водорода в тканях организма.

Определение крахмала в растительных тканях.

Тема 3.3.

Строение и функции прокариотической клетки. (1час)

Царство Прокариоты (Дробянки); систематика и отдельные представители: цианобактерии, бактерии и микоплазмы. Форма и размеры прокариотических клеток. Строение цитоплазмы бактериальной клетки; локализация ферментных систем и организация метаболизма у прокариот. Генетический аппарат бактерий; особенности реализации наследственной информации.

Особенности жизнедеятельности бактерий: автотрофные и гетеротрофные бактерии; аэробные и анаэробные микроорганизмы. Спорообразование и его биологическое значение. Размножение, половой процесс у бактерий; рекомбинации. Место и роль прокариот в биоценозах.

Демонстрация. Схемы строения клеток различных прокариот.

Тема 3.4.

Структурно-функциональная организация клеток эукариот (бчасов)

Цитоплазма эукариотической клетки. Мембранный принцип организации строение биологической мембраны, морфологические функциональные особенности мембран различных клеточных структур. Органеллы цитоплазмы, их структура и функции. Наружная цитоплазматическая мембрана, эндоплазматическая сеть, аппарат Гольджи, лизосомы; механизм внутриклеточного пищеварения. Митохондрии — энергетические станции-клетки; механизмы клеточного дыхания. Рибосомы и их участие в процессах трансляции. Клеточный центр. Органоиды движения: жгутики и реснички. Цитоскелет. Специальные органоиды цитоплазмы: сократительные вакуоли и др. Взаимодействие органоидов в обеспечении процессов метаболизма. Особенности строения растительных клеток; вакуоли и пластиды. Виды пластид; их структура и функциональные особенности. Клеточная стенка. Особенности строения клеток грибов. Включения, значение и роль в метаболизме клеток.

Клеточное ядро — центр управления жизнедеятельностью клетки. Структуры клеточного ядра: ядерная оболочка, хроматин (гетерохроматин и эухроматин), ядрышко. Кариоплазма; химический состав и значение для жизнедеятельности ядра. Дифференциальная активность генов; эухроматин. Хромосомы. Структура хромосом в различные периоды жизненного цикла клетки; кариотип, понятие о гомологичных хромосомах. Диплоидный и гаплоидный наборы хромосом.

Клеточные технологии. Стволовые клетки и перспективы их применения в биологии и медицине. Клонирование растений и животных.

Демонстрация. Модели клетки. Схемы строения органоидов растительной и животной клеток. Микропрепараты клеток растений, животных и одноклеточных грибов.

Лабораторные и практические работы

Изучение строения растительной и животной клеток под микроскопом.

Наблюдение за движением цитоплазмы в растительных клетках.

Тема 3.5.

Обмен веществ в клетке (метаболизм) (7 часов)

Обмен веществ и превращение энергии в клетке — основа всех проявлений ее жизнедеятельности. Каталитический характер реакций обмена веществ. Компартментализация процессов метаболизма и локализация специфических ферментов в мембранах определенных клеточных структур. Автотрофные и Пластический и энергетический гетеротрофные организмы. Реализация наследственной информации. Биологический синтез белков и других органических молекул в клетке. Транскрипция; ее сущность и механизм. Процессинг иРНК; биологический смысл и значение. Трансляция; сущность и механизм. Энергетический обмен; структура и функции АТФ. Этапы энергетического обмена. Подготовительный этап, роль лизосом; неполное (бескислородное) расщепление. Полное кислородное окисление; локализация процессов в митохондриях. Сопряжение расщепления глюкозы в клетке с распадом и синтезом АТФ. Фотосинтез; световая фаза и организации тилакоидов гран, энергетическая Темновая фаза фотосинтеза; процессы темновой фазы; использование Хемосинтез. Принципы нервной и эндокринной регуляции процессов превращения веществ и энергии в клетке.

Демонстрация. Схемы путей метаболизма в клетке. Энергетический обмен на примере расщепления глюкозы. Пластический обмен: биосинтез белка и фотосинтез (модели-аппликации). Схемы, отражающие принципы регуляции метаболизма на уровне целостного организма.

Тема 3.6.

Жизненный цикл клеток. (2 часа)

Клетки в многоклеточном организме. Понятие о дифференцировке клеток многоклеточного организма. Жизненный цикл клеток. Ткани организма с разной скоростью клеточного обновления: обновляющиеся, растущие и стабильные. Размножение клеток. Митотический цикл: интерфаза — период клетки делению, редупликация ДНК; и преобразования хромосом в них. Механизм митотического деления образования веретена деления и расхождения дочерних хромосом в анафазе. Биологический смысл митоза. Биологическое значение митоза (бесполое размножение, восполнение рост, клеточных потерь физиологических И патологических условиях). Понятие 0 регенерации. Нарушения интенсивности клеточного размножения uзаболевания человека и животных', трофические язвы, доброкачественные и злокачественные опухоли и др.

Демонстрация. Митотическое деление клетки в корешке лука под микроскопом и на схеме. Гистологические препараты различных тканей млекопитающих. Схемы строения растительных и животных клеток различных тканей в процессе деления. Схемы путей регенерации органов и тканей у животных разных систематических групп.

Тема 3.7.

Неклеточные формы жизни. Вирусы и бактериофаги. (2часа)

Вирусы — внутриклеточные паразиты на генетическом уровне. Открытие вирусов, механизм взаимодействия вируса и клетки, инфекционный процесс. Вертикальный и горизонтальный тип передачи вирусов. Заболевания животных и растений, вызываемые вирусами. Вирусные заболевания, встречающиеся у человека; грипп, гепатит, СПИД. Бактериофаги.

Демонстрация. Модели различных вирусных частиц. Схемы взаимодействия вируса и клетки при горизонтальном и вертикальном типе передачи инфекции. Схемы, отражающие процесс развития вирусных заболеваний.

Тема 3.8.

Клеточная теория. (3 часа)

Клеточная теория строения организмов. История развития клеточной теории; работы М. Шлейдена, Т. Шванна, Р. Броуна, Р. Вирхова и других ученых. Основные положения клеточной теории; современное состояние клеточной теории строения организмов. Значение клеточной теории для развития биологии.

Демонстрация. Биографии ученых, внесших вклад в развитие клеточной теории.

Основные понятия. Органические и неорганические вещества, образующие структурные компоненты клеток. Прокариоты: бактерии и синезеленые Эукариотическая водоросли (цианобактерии). клетка, многообразие эукариот; клетки одноклеточных многоклеточных организмов. И Особенности растительной и животной клеток. Ядро и цитоплазма главные составные части клетки. Органоиды цитоплазмы. Включения. Хромосомы, их строение. Диплоидный и гаплоидный наборы хромосом. Жизненный цикл клетки. Митотический Кариотип. цикл; Биологический смысл митоза. Биологическое значение митоза. Положения клеточной теории строения организмов.

Умения. Объяснять рисунки и схемы, представленные в учебнике. Самостоятельно составлять схемы процессов, протекающих в клетке, и локализовать отдельные их этапы в различных клеточных структурах. Иллюстрировать ответ простейшими схемами и рисунками клеточных структур. Работать с микроскопом и изготовлять простейшие препараты для микроскопического исследования.

Межпредметные связи. Неорганическая химия. Химические связи. Строение вещества. Окислительно-восстановительные реакции. Органическая химия. Принципы организации органических соединений. Углеводы, жиры, белки,

нуклеиновые кислоты. Физика. Свойства жидкостей, тепловые явления. Законы термодинамики.

РАЗДЕЛ 4.

Размножение организмов. (7 часов)

TEMA 4.1.

Бесполое размножение растений и животных (2 часа)

Формы бесполого размножения: митотическое деление клеток одноклеточных; спорообразование, почкование у одноклеточных и многоклеточных организмов; вегетативное размножение. Биологический смысл и эволюционное значение бесполого размножения.

Демонстрация. Способы вегетативного размножения плодовых деревьев и овощных культур. Схемы и рисунки, показывающие почкование дрожжевых грибов и кишечнополостных.

Тема 4.2.

Половое размножение (5 часов)

Половое размножение растений и животных. Половая система, органы полового размножения млекопитающих. Гаметогенез. Периоды образования половых клеток: размножение и рост. Период созревания (мейоз); профаза I и процессы, в ней происходящие: конъюгация, кроссинговер. Механизм, генетические последствия И биологический смысл кроссинговера. мейоза. Период Биологическое значение И биологический смысл особенности формирования половых клеток; сущность И Особенности сперматогенеза и овогенеза. Осеменение и оплодотворение. Моно- и полиспермия; биологическое значение. Наружное и внутреннее оплодотворение. Партеногенез. Развитие половых клеток у высших растений; двойное оплодотворение. Эволюционное значение полового размножения.

Демонстрация. Микропрепараты яйцеклеток. Схема строения сперматозоидов различных животных. Схемы и рисунки, представляющие разнообразие потомства у одной пары родителей.

Основные понятия. Многообразие форм и распространенность бесполого размножения. Биологическое значение бесполого размножения. Половое размножение и его биологическое значение. Органы половой системы; принципы их строения и гигиена. Гаметогенез; мейоз и его биологическое значение. Осеменение и оплодотворение.

Умения. Объяснять процесс мейоза и другие этапы образования половых клеток, используя схемы и рисунки из учебника. Характеризовать сущность бесполого и полового размножения.

Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Физика. Электромагнитное поле. Ионизирующее излучение, понятие о дозе излучения и биологической защите.

РАЗДЕЛ 5.

Индивидуальное развитие организмов. (13 часов)

Тема 5.1. Эмбриональное развитие животных (6 часов)

Типы яйцеклеток; полярность, распределение желтка и генетических детерминант. Оболочки яйца; активация оплодотворенных яйцеклеток к развитию. Основные закономерности дробления; образование однослойного бластулы. Гаструляция; закономерности образования зародыша двуслойного зародыша — гаструлы. Зародышевые листки и их дальнейшая дифференцировка. Первичный органогенез (нейруляция) и дальнейшая дифференцировка тканей, органов и систем. Регуляция эмбрионального развития; детерминация и эмбриональная индукция. Роль нервной и эндокринной систем в обеспечении эмбрионального развития организмов. растений Искусственное Управление размножением И животных. осеменение invitro, Клонирование осеменение, пересадка зародышей. растений и животных; перспективы создания тканей и органов человека.

Демонстрация. Сравнительный анализ зародышей позвоночных на разных этапах эмбрионального развития. Модели эмбрионов ланцетника, лягушек или других животных. Таблицы, иллюстрирующие бесполое и половое размножение.

Тема 5.2.

Постэмбриональное развитие животных. (2 часа)

Закономерности постэмбрионального периода развития. Непрямое развитие; полный и неполный метаморфоз. Биологический смысл развития с метаморфозом. Стадии постэмбрионального развития (личинка, куколка, имаго). Прямое развитие: до-репродуктивный, репродуктивный и пострепродуктивный периоды. Старение и смерть; биология продолжительности жизни.

Демонстрация. Таблицы, иллюстрирующие процесс метаморфоза у членистоногих и позвоночных (жесткокрылые и чешуйчатокрылые, амфибии).

Тема 5.3.

Онтогенез высших растений. (1 час)

Биологическое значение двойного оплодотворения. Эмбриональное развитие; деление зиготы, образование тканей и органов зародыша. Постэмбриональное развитие. Прорастание семян, дифференцировка органов и тканей, формирование побеговой и корневой систем. Регуляция развития растений; фитогормоны.

Демонстрация. Схемы эмбрионального и постэмбрионального развития высших растений.

Тема 5.4.

Общие закономерности онтогенеза. (1 час)

Сходство зародышей и эмбриональная дивергенция признаков (закон К. Бэра). Биогенетический закон (Э. Геккель и К. Мюллер). Работы академика А. Н. Северцова, посвященные эмбриональной изменчивости (изменчивость всех стадий онтогенеза; консервативность ранних стадий эмбрионального развития; возникновение изменений как преобразование стадий развития и полное выпадение предковых признаков).

■ Демонстрация. Таблица, отражающая сходство зародышей позвоночных животных. Схемы' преобразования органов и тканей в филогенезе.

Тема 5.5. Развитие организма и окружающая среда.(3 часа)

Роль факторов окружающей среды в эмбриональном и постэмбриональном развитии организма. Критические периоды развития. Влияние изменений гомеостаза организма матери и плода в результате воздействия токсичных веществ (табачного дыма, алкоголя, наркотиков и т. д.) на ход эмбрионального и постэмбрионального периодов развития (врожденные уродства).

Понятие о регенерации; внутриклеточная, клеточная, тканевая и органная регенерация. Эволюция способности к регенерации у позвоночных животных.

Демонстрация. Фотографии, отражающие последствия воздействий факторов среды на развитие организмов. Схемы и статистические таблицы,

демонстрирующие последствия употребления алкоголя, наркотиков и табака на характер развития признаков и свойств у потомства.

Основные понятия. Этапы эмбрионального развития растений и животных. Периоды постэмбрионального развития. Биологическая продолжительность жизни. Влияние вредных воздействий курения, употребления наркотиков, алкоголя, загрязнения окружающей среды на развитие организма и продолжительность жизни

Умения. Объяснять процесс развития живых организмов как результат постепенной реализации наследственной информации. Различать и охарактеризовывать различные периоды онтогенеза и указывать факторы, неблагоприятно влияющие на каждый из этапов развития.

Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Физика. Электромагнитное поле. Ионизирующее излучение, понятие о дозе излучения и биологической защите.

РАЗДЕЛ 6.

Основы генетики и селекции. (30 часов)

Тема 6.1.

История представлений о наследственности и изменчивости. (2 часа)

Представления древних о родстве и характере передачи признаков из поколения в поколение. Взгляды средневековых ученых на процессы наследования признаков. История развития генетики. Основные понятия генетики. Признаки и свойства; гены, аллельные гены. Гомозиготные и гетерозиготные организмы. Генотип и фенотип организма; генофонд.

Демонстрация. Биографии виднейших генетиков.

Тема 6.2.

Основные закономерности наследственности. (14 часов)

Молекулярная структура гена. Гены структурные и регуляторные. Подвижные генетические элементы. Регуляция экспрессии генов на уровне транскрипции, процессинга и-РНК и трансляции. Хромосомная (ядерная) и нехромосомная (цитоплазматическая) наследственность. Связь между генами и признаками.

Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное

скрещивание. Первый закон Менделя — закон доминирования. Второй закон Менделя — закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание; третий закон Менделя — закон независимого комбинирования.

Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов; расстояние между генами, расположенными в одной хромосоме; генетические карты хромосом.

Генетическое определение пола; гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом.

Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование и сверхдоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Экспрессивность и пенетрантность гена.

Демонстрация. Карты хромосом человека. Родословные выдающихся представителей культуры.

Лабораторные и практические работы

Решение генетических задач и составление родословных.

Тема 6.3.

Основные закономерности изменчивости. (8 часов)

Основные формы изменчивости. Генотипическая изменчивость. Мутации. Генные, хромосомные и геномные мутации. Свойства мутаций; соматические мутации. Нейтральные мутации. Полулетальные генеративные летальные мутации. Причины и частота мутаций; мутагенные факторы. Эволюционная роль мутаций; значение мутаций для практики сельского хозяйства биотехнологии. Комбинативная изменчивость. И возникновения различных комбинаций генов и их роль в создании генетического разнообразия в пределах вида (кроссинговер, независимое расхождение гомологичных хромосом в первом и дочерних хромосом во втором оплодотворение). Эволюционное делении мейоза, значение комбинативной изменчивости. Закон гомологических рядов В наследственной изменчивости Н. И. Вавилова.

Фенотипическая, или модификационная, изменчивость. Роль условий внешней среды в развитии и проявлении признаков и свойств. Свойства модификаций: определенность условиями среды, направленность, групповой характер, ненаследуемость. Статистические закономерности

модификационной изменчивости; вариационный ряд и вариационная кривая. Норма реакции; зависимость от генотипа. Управление доминированием.

Демонстрация. Примеры модификационной изменчивости.

Лабораторные и практические работы

Изучение изменчивости.

Построение вариационной кривой (размеры листьев растений, антропометрические данные учащихся).

Тема 6.4.

Генетика человека. (2 часа)

Методы изучения наследственности генеалогический, человека: близнецовый, цитогенетический и др. Генетические карты хромосом человека. Сравнительный анализ хромосом человека и человекообразных наследования признаков Генные обезьян. Характер V человека. хромосомные аномалии человека заболевания. И вызываемые ИМИ Генетическое консультирование. Генетическое родство человеческих рас, их биологическая равноценность.

Демонстрация. Хромосомные аномалии человека и их фенотипические проявления.

Лабораторная работа

Составление родословных.

Тема 6.5.

Селекция животных, растений и микроорганизмов. (4 часа)

Центры происхождения и многообразия культурных растений. Сорт, порода, штамм. Методы селекции растений и животных: отбор и гибридизация; формы отбора (индивидуальный и массовый). Отдаленная гибридизация; явление гетерозиса. Искусственный мутагенез. Селекция микроорганизмов. Биотехнология и генетическая инженерия. Трансгенные растения; генная и клеточная инженерия в животноводстве.

Достижения и основные направления современной селекции. Значение селекции для развития сельскохозяйственного производства, медицинской, микробиологической и других отраслей промышленности.

Демонстрация. Сравнительный анализ пород домашних животных, сортов культурных растений и их диких предков. Коллекции и препараты сортов культурных растений, отличающихся наибольшей плодовитостью.

Основные понятия. Ген. Генотип как система взаимодействующих генов организма. Признак, свойство, фенотип. Закономерности наследования признаков, выявленные Г. Менделем. Хромосомная теория наследственности. Сцепленное наследование; закон Т. Моргана. Генетическое определение пола у животных и растений. Изменчивость. Наследственная

и ненаследственная изменчивость. Мутационная и комбинативная изменчивость. Модификации; норма реакции. Селекция; гибридизация и отбор. Гетерозис и полиплоидия, их значение. Сорт, порода, штамм.

Умения. Объяснять механизмы передачи признаков и свойств из поколения в поколение, а также возникновение у потомков отличий от родительских форм. Составлять простейшие родословные и решать генетические задачи. Понимать необходимость развития теоретической генетики и практической селекции для повышения эффективности сельскохозяйственного производства и снижения себестоимости продовольствия.

Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Органическая химия. Строение и функции органических молекул: белки, нуклеиновые кислоты (ДНК, РНК).

Физика. Дискретность электрического заряда. Основы молекулярно-кинетической теории. Статистический характер законов молекулярно-кинетической теории. Рентгеновское излучение. Понятие о дозе излучения и биологической зашите.

Учебно-тематический план 10 класс

№	Разделы	Количество часов	лабораторных и практических работ контрольных работ		
Раз	Раздел I . Введение в биологию <u>(5 часов).</u>				
1.	Предмет и задачи общей биологии.	2			
	Уровни организации живой материи.				
2.	Основные свойства живого. Многообразие живого мира.	3			

Pas	<u>дел II.</u> Происхождение и начальные этапы разв	ития жизни	на Земле <u>(18 часов).</u>
3.	История представлений о возникновении жизни на Земле.	4	
4	Предпосылки возникновения жизни на Земле	6	
5	Современные представления о возникновении жизни на Земле	8	
Pa ₃	дел III. Учение о клетке (31 часов).		
6	Введение в цитологию	1	
7	Химическая организация живого вещества	9	л/р№ 1.Ферментативное расщепление пероксида водорода в тканях организма.
			л/р№ 2.Определение крахмала в растительных тканях.
8	Строение и функции прокариотической клетки	1	
9	Структурно-функциональная организация клеток эукариот	6	л/р № 3.Изучение строения растительной и животной клеток под микроскопом.
			л/р № 4.Наблюдение за движением цитоплазмы в растительных клетках
10	Обмен веществ в клетке (метаболизм)	7	
11	Жизненный цикл клеток	2	
12	Неклеточные формы жизни. Вирусы и бактериофаги	2	
13	Клеточная теория	3	
Pa ₃	<u>дел IY.</u> Размножение организмов <u>(7 часов).</u>		
14	Бесполое размножение растений и животных	2	
15	Половое размножение	5	
16	Раздел V. Индивидуальное развитие организмов.	13	
17	Эмбриональное развитие животных	6	
18	Постэмбриональное развитие животных	2	
19	Онтогенез высших растений	1	

20	Общие закономерности онтогенеза	1	
20	оощие закономерности оптогенеза	1	
21	Развитие организма и окружающая среда	3	
Pa ₃	<u>дел VI.</u> Основы генетики и селекции <u>(30 часов)</u>	<u>.</u>	
22	История представлений о наследственности и изменчивости	2	
23	Основные закономерности наследственности	14	л/р № 5. Решение генетических задач и составление родословных
24	Основные закономерности изменчивости	8	
25	Закономерности изменчивости.	9	л/р № 6. Изучение изменчивости. л/р № 7. Решение генетических задач и составление родословных.
26	Генетика человека	2	л/р № 8. Составление родословных
27	Селекция животных, растений и микроорганизмов	4	